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The propagation of surface water waves over rough topographical bottoms is investigated by the multiple
scattering theory. It is shown that the waves can be localized spatially through the process of multiple scatter-
ing and wave interference, a peculiar wave phenomenon which has been previously discussed for frozen light
in optical systems[S. John, Nature390, 661(1997)]. This paper demonstrates that when frozen, the transmis-
sion of the waves falls off exponentially, and a cooperative behavior appears, fully supporting previous pre-
dictions. A graphic method is used to illustrate this distinct phase state in the wave propagation.
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Multiple scattering of waves propagate in media with
many scatterers leads to many interesting phenomena such as
the band gaps in periodically structured media and Anderson
localization in disordered media[1]. Within a band gap,
waves are evanescent; when localized, they remain trapped
spatially until dissipated. The phenomenon of band gaps and
localization has been studied for electronic, electromagnetic,
and acoustic systems[2].

Recently, Wiersmaet al. [3] have demonstrated that light
can be localized in strongly scattering semiconductor pow-
ders. The authors have shown a transmission transition from
classical diffusion to localization. When localized, the optical
transmission decays exponentially instead of linearly with
the thickness of a sample. At the transition, the transmission
has a power-law dependence on the inverse thickness. This
experiment not only leads to new applications[4] in optical
data processing, but also sheds new light on the understand-
ing of the Anderson localization transition. Although regret-
fully not being shown by this experiment, it has been further
predicted by John[4] that a coherent behavior should appear
for localized waves, in the sense the photons have coopera-
tive effects such as laser action. In addition, in the classical
diffusion through a scattering medium, the intensity distribu-
tion will fluctuate significantly due to wave interference,
while the fluctuation will be reduced in the localized state.

Here we report that the Anderson localization phenom-
enon may also be observed for the surface water wave propa-
gation over random bottoms, also termed as gravity waves in
fluid mechanics. We show that gravity waves can come to a
complete halt in the presence of random multiple scattering
and wave interference. In the localized state, not only the
wave intensity decreases exponentially in agreement with the
observation in Ref.[3], but also a distinct phase coherence
behavior prevails. The transition from the diffusive to local-
ization regime is signified by the variations in the fluctuation
of the transmission. The localization regime overlaps par-
tially with the band gap of corresponding regularly struc-
tured bottoms. These observations fully support the predic-
tions in Ref. [4], indicating that these phenomena are a
generic property of waves.

The propagation of water waves over topographical bot-
toms has actually been a subject of much research, from both
ocean engineering and fundamental research perspectives
(e.g., Refs.[5–9]). A comprehensive summary and reference
can be found in excellent textbooks[10–12].

The concept of Anderson localization has also been ex-
tended to the study of the propagation of surface water waves
over rough bottoms. In 1983, Guazzelliet al. [13] suggested
that the phenomenon of Anderson localization could be ob-
served on one dimensional shallow water waves, when the
bottom has random structures. Later, Devillardet al. recon-
sidered the problem by the potential theory[14]. The experi-
mental observation of water wave localization has been sub-
sequently suggested by Belzoneet al. [15]. These earlier
attempts have been limited to the transmission measurement
and to one dimension.

A recent experiment[16] has used water waves to illus-
trate the Bloch wave phenomenon over a two-dimensional
periodic bottom. This experiment has made it possible that
the abstract concept be presented in a clear manner.

The experimental advances[15,16] pave the way for in-
vestigating the phenomena of Anderson localization in disor-
dered media and wave band gaps in periodic structures.
These developments are the motivation for us to explore
some important properties of Anderson localization in the
propagation of surface water waves over random topographi-
cal bottoms.

Making the results experimentally testable, we will adopt
the systems from the experiment[16]. The conceptual layout
of the systems is illustrated in Fig. 1. We consider a water
column with a uniform depthH. There areN cylindrical
steps mounted on the water bottom. For simplicity, the steps
are assumed to be identical. The heights of the steps are
denoted byDH and the radii area; we can also extend to
consider the situation of cylindrical dimples by letting
DH,0. For comparison, we will consider both the randomly
and the corresponding orderly arrangements of the steps on
the bottoms. In the ordered case, the steps form a square
lattice with lattice constantd; therefore the areal occupation
fraction by the steps isb=pa2/d2. In the random case, the
steps are placed completely randomly within a circular area
of radiusR. In both cases, the areal occupation fraction is the
same; thereforeL=ÎsNpa2d /b and R=ÎsNa2d /b. A mono-*Corresponding author. Electronic address: zhen@phy.ncu.edu.tw
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chromatic transmitting source of angular frequencyv is lo-
cated in the middle of the arrays of the steps. The transmis-
sion is measured by a receiver located outside the arrays. The
water surface is in thex-y plane. In the simulation, all
lengths are scaled by the lattice constantd. This is a two-
dimensional problem.

The governing equations for the motion of surface water
waves in the systems described by Fig. 1 can be obtained by
invoking the Newton’s second law and the conservation law
of mass. Not to exclude other theories[11,12], here we will
use the formulation given in Refs.[16–18].

The displacement of the water surface is denoted by
hsrW ,td. The equation of motion for its Fourier component is
derived as[16–18]

¹W ·S 1

k2¹W hsrW dD + hsrW d = − 4pdsrW − rWsd, s1d

where ¹W =]xeWx+]yeWy, rWs is the location of the transmitting
source, and the wave numberk satisfies

v2 = fgksrW d + bk2skWdgtanhfksrW dhsrW dg, s2d

in which b is the capillary length. For a fixed frequencyv,
the wave number varies as a function of the depthhsrWd. With-
out the steps, the wave field ish0. We note that Eq.(1) is
derived when nonlinear effects are ignored. The nonlinearity
may give rise to delocalization[9].

In this paper we will apply Eq.(1) to the systems depicted
in Fig. 1. The transmitted waves will be scattered repeatedly
by the steps, forming the process of multiple scattering. Such
a multiple scattering process can be solved for any arrange-
ment of the steps by the multiple scattering theory[18] fol-

lowing the work of Twersky[19]. In the computation, the
transmission is normalized such that it is unity when there
are no scatterers, thus eliminating the trivial geometrical
spreading effect. In the periodic case, the plane wave expan-
sion method will be used to compute the band structures of
the water waves[18].

A set of numerical simulations has been carried out. In the
simulation, the following parameters are adopted from the
experiment[16]: the depthH=2.5 mm; the height of the cyl-
inders DH=2.49 mm; in the periodic case, the lattice con-
stant d=2.5 mm; the radius of the stepsa=0.75 mm; the
capillary lengthb=0.93 mm. In the random case, the trans-
mission intensity is averaged over the random configura-
tions.

First, in Fig. 2 we show in the log scale the normalized
intensity of transmitted wavessuTu2= uh /h0u2d as a function of
frequency, and the band structure of the corresponding
square arrays of the cylindrical steps. Two situations are con-
sidered. In Fig. 2(b), the transmitting source is located at the
center of a square array measured as 14314, and the re-
ceiver is at two lattice constants away from the array along
the GX direction. In Fig. 2(c), both the source and the re-
ceiver are located at two lattice constants away from a rect-
angular array alongGX, but on the opposite sides of the
array. The array measures as 8325. To ensure the stability of
the results, enough modes and number of steps have been
considered. The wave transmission along theGX direction is
shown for the periodic case. The transmission through the
corresponding random arrays of steps is also plotted.

From Fig. 2(b), we see that a complete band gap region
can be identified as ranging from about 12.5 to 16 Hz. A
strong localization regime is shown to range from
10 to 14 Hz in the random case in(b). Though shallower,
this regime overlaps with the inhibited transmission regime
in the periodic case, i.e., the transmission valley in the peri-
odic case in Fig. 2(b). By comparison, we see that although
not exactly overlapping with each other, the strong localiza-
tion and complete band gap regime in Fig. 2(a) are close to
each other; thus finding the complete band gaps will facili-
tate locating the localization regimes, as suggested in Ref.
[20]. We note here that in the periodic case the transmission
inhibition regime does not fully overlap with the complete

FIG. 1. The conceptual layout of the systems:(a) and(b) show
the bird’s views; and(c) the side view. The circles denote the cy-
lindrical steps, while Sx and Rx refer to the stimulating source and
the receiver, respectively.

FIG. 2. Right panel, normalized transmission lnuTu2 versus fre-
quency for the complete random arrays(solid line) and the corre-
sponding square lattice of cylindrical steps(dotted line). The trans-
mission in the periodic case is along theGX direction. Left panel,
the band structures for the square lattice. Middle panel, the source is
placed inside the sample. Right panel, the source is placed on one
side of the sample and the receiver is placed on the other. The
inserted box in(a) denotes the Brillouin zone.
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band gap. This is because we have set the source inside the
array. When the transmission is measured across the sample,
i.e., the source is placed on one side of the sample and the
receiver is placed on the other, the two will tend to overlap,
as is demonstrated by Fig. 2(c).

To show the conjectured frozen feature of localized waves
and fluctuating feature of nonlocalized waves[4], we write
the wave fieldhsrW d asuhsrW dueiusrW d. This allows us to separate
the amplitude field and the phase field of the waves. For the
phase fieldu, we define a unit phase vector field asuW
= êx cosu+ êy sinu. Both phase vector field and the wave in-
tensity fielduhu2 can be plotted in thex-y plane. The signifi-
cance of the phase vector field is as follows. The intensity

flux of surface water waves can be shown asjW,uhu2¹W u. It is
clear that whenu is constant, at least by spatial domains,
while uhuÞ0, the wave transport would come to a stop and
the waves will be localized or frozen in the space.

In Fig. 3, the two-dimensional spatial distribution of the
normalized intensityuh /h0u2 and the phase vector field are
plotted. To be brief, we only show the results for two fre-
quencies: 5 Hz and 11.966 Hz, outside and within the local-
ization region, respectively. The phase vectors are located
randomly in thex-y plane. Forf =5 Hz, the intensity spreads
spatially, meanwhile the phase vectors point to various direc-
tions. This indicates that waves are not yet localized at this
frequency. The results in Fig. 3(b) nicely demonstrate the
properties of the localized or frozen waves. Atf
=11.966 Hz, the wave intensity is mainly confined near the
transmission site. Meanwhile, there is an ordering in the
phase vector field, that is, all the phase vectors either point to
the same direction or the opposite direction, indicating that
the phase field is constant by domains. Here we clearly dem-
onstrate that the localized waves behave as a standing wave
in the random media. These observations fully comply with
the above general discussion of localization, and also support
the previous predictions. The intensity distribution in Fig. 3
realizes remarkably well what has been conjectured in Fig. 1

of Ref. [4]. Although the phase coherence behavior covers
nearly all the sample area, we also notice that there is some
disorientation near the boundary. This is due to the finite size
in the simulation. For a finite system, the wave can leak out
at the boundary, resulting in disappearance of the phase co-
herence. When enlarging the sample size, we observe that the
area showing the perfect phase coherence will increase. We
have further verified that the features shown in Fig. 3 remain
quantitatively the same for any other random configuration.

We have also considered the fluctuation in the transmis-
sion. Figure 4 plots the fluctuation versus frequency for the
random case. The sample size is 9 d. Here we see that the
fluctuation tends to be zero within a regime which is consis-
tent with the strong localization range discussed for Fig. 2.
At around the localization transition edges, significant peaks
in the transmission fluctuation appear. For extremely low fre-
quencies, the fluctuation tends to disappear. This is because
when the frequency approaches zero, the scattering strength
will diminish, and thus the wave propagation will no longer
be affected by the steps.

To find the localization length, we plot the wave transmis-
sion in all directions as a function of the distance from the
source. The results are shown in Fig. 5. For comparison, the
periodic case is also potted. Here, the simulation data are
shown by the black squares, and the results fitted by the least
squares method is shown by the solid lines; the deviations
from the lines reflect the inhomogeneity. It is shown that
after removing the trivial geometrical spreading factor, the
data can be fitted well by the exponential functione−r/j.

FIG. 3. The phase graph and spatial distribution of the intensity
field uh /h0u2 at two frequencies for one random configuration:(a1)
and (a2) f =5.0 Hz; (b1) and (b2) f =11.966 Hz. Left panel, the
phase picture for the phase vectors defined in the text; here the
phase of the source is set to zero. Right panel, the intensity spatial
distribution in the horizontal plane.

FIG. 4. The fluctuation of transmission as a function of
frequency.

FIG. 5. Wave transmission versus the distance away from the
source at 11.966 Hz:(a) the periodic case;(b) the random case. The
geometrical spreading factor has been removed by the normaliza-
tion. The slopes are fitted from the least squares method.
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From the slopes of the solid lines, we obtain the evanescence
length in the ordered case and the localization length in the
random situation, respectively.

In summary, we have investigated the Anderson localiza-
tion phenomenon in the framework of gravity waves over
rough bottoms. As a comparison, the case of corresponding
regularly structured bottoms is also considered. The results
indicate that when localization occurs, the wave intensity is
confined near the transmitting point, and falls off exponen-
tially. We have also demonstrated that the localized waves
stand still in the space, represented by the phase coherence
behavior. In addition, the transition from classical diffusion
to localization is associated with a significant change in the

transmission fluctuation. The observation supports the previ-
ous predictions on localized waves. Since water waves are a
simple macroscopic system, experiments could be readily
performed. Therefore, many significant phenomena, previ-
ously expected at smaller scales such as the discussed Ander-
son localization, may be demonstrated with water waves.
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