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Frozen water waves over rough topographical bottoms
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The propagation of surface water waves over rough topographical bottoms is investigated by the multiple
scattering theory. It is shown that the waves can be localized spatially through the process of multiple scatter-
ing and wave interference, a peculiar wave phenomenon which has been previously discussed for frozen light
in optical system$S. John, Nature390, 661(1997]. This paper demonstrates that when frozen, the transmis-
sion of the waves falls off exponentially, and a cooperative behavior appears, fully supporting previous pre-
dictions. A graphic method is used to illustrate this distinct phase state in the wave propagation.
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Multiple scattering of waves propagate in media with The propagation of water waves over topographical bot-
many scatterers leads to many interesting phenomena suchtasns has actually been a subject of much research, from both
the band gaps in periodically structured media and Andersoncean engineering and fundamental research perspectives
localization in disordered medifl]. Within a band gap, (e.g., Refs[5-9]). A comprehensive summary and reference
waves are evanescent; when localized, they remain trappexan be found in excellent textbooks0-12.
spatially until dissipated. The phenomenon of band gaps and The concept of Anderson localization has also been ex-
localization has been studied for electronic, electromagnetidended to the study of the propagation of surface water waves
and acoustic systenjg]. over rough bottoms. In 1983, Guazzadtial. [13] suggested

Recently, Wiersmat al. [3] have demonstrated that light that the phenomenon of Anderson localization could be ob-
can be localized in strongly scattering semiconductor powserved on one dimensional shallow water waves, when the
ders. The authors have shown a transmission transition fromnottom has random structures. Later, Devillatdal. recon-
classical diffusion to localization. When localized, the opticalsidered the problem by the potential thegiy]. The experi-
transmission decays exponentially instead of linearly withmental observation of water wave localization has been sub-
the thickness of a sample. At the transition, the transmissiosequently suggested by Belzoee¢ al. [15]. These earlier
has a power-law dependence on the inverse thickness. Thigtempts have been limited to the transmission measurement
experiment not only leads to new applicatigd$ in optical  and to one dimension.
data processing, but also sheds new light on the understand- A recent experimenfl6] has used water waves to illus-
ing of the Anderson localization transition. Although regret-trate the Bloch wave phenomenon over a two-dimensional
fully not being shown by this experiment, it has been furtherperiodic bottom. This experiment has made it possible that
predicted by Johi] that a coherent behavior should appearthe abstract concept be presented in a clear manner.
for localized waves, in the sense the photons have coopera- The experimental advancé$5,16 pave the way for in-
tive effects such as laser action. In addition, in the classicalestigating the phenomena of Anderson localization in disor-
diffusion through a scattering medium, the intensity distribu-dered media and wave band gaps in periodic structures.
tion will fluctuate significantly due to wave interference, These developments are the motivation for us to explore
while the fluctuation will be reduced in the localized state. some important properties of Anderson localization in the

Here we report that the Anderson localization phenom-propagation of surface water waves over random topographi-
enon may also be observed for the surface water wave propga| hottoms.
gation over random bottoms, also termed as gravity waves in  Mmaking the results experimentally testable, we will adopt
ﬂUId meChaniCS. We ShOW that graVity waves can come to Qhe Systems from the experimqﬂﬁ]_ The COﬂceptua' |ayout
complete halt in the presence of random multiple scatteringf the systems is illustrated in Fig. 1. We consider a water
and wave interference. In the localized state, not only theojumn with a uniform deptH. There areN cylindrical
wave intensity decreases exponentially in agreement with thgteps mounted on the water bottom. For simplicity, the steps
observation in Ref[3], but also a distinct phase coherenceare assumed to be identical. The heights of the steps are
behavior preVaiIS. The transition from the diffusive to local- denoted byAH and the radii area; we can aISO extend to
ization regime is signified by the variations in the fluctuationconsider the situation of cylindrical dimples by letting
of the transmission. The localization regime overlaps paraH <0. For comparison, we will consider both the randomly
tially with the band gap of corresponding regularly struc-and the corresponding orderly arrangements of the steps on
tured bottoms. These observations fully support the predicthe hottoms. In the ordered case, the steps form a square
tions in Ref. [4], indicating that these phenomena are ajattice with lattice constand; therefore the areal occupation
generic property of waves. fraction by the steps ig=wa?/d°. In the random case, the

steps are placed completely randomly within a circular area
of radiusR. In both cases, the areal occupation fraction is the
*Corresponding author. Electronic address: zhen@phy.ncu.edu.tsame; thereforé.=+/(N7a?)/ 8 and R=/(Na?)/ 8. A mono-
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H lowing the work of Twersky[19]. In the computation, the

AH transmission is normalized such that it is unity when there
are no scatterers, thus eliminating the trivial geometrical
spreading effect. In the periodic case, the plane wave expan-
sion method will be used to compute the band structures of

FIG. 1. The conceptual layout of the syster@:and(b) show  the water wave$18].

the bird’s views; andc) the side view. The circles denote the cy- A set of numerical simulations has been carried out. In the

lindrical steps, while Sx and Rx refer to the stimulating source andsimulation, the following parameters are adopted from the

the receiver, respectively. experimen{16]: the depttH=2.5 mm; the height of the cyl-

inders AH=2.49 mm; in the periodic case, the lattice con-
chromatic transmitting source of angular frequencys lo-  stantd=2.5 mm; the radius of the ste@s=0.75 mm; the
cated in the middle of the arrays of the steps. The transmiszapillary lengthb=0.93 mm. In the random case, the trans-
sion is measured by a receiver located outside the arrays. Thission intensity is averaged over the random configura-
water surface is in they plane. In the simulation, all tions.

lengths are scaled by the lattice constdnfThis is a two- First, in Fig. 2 we show in the log scale the normalized

dimensional problem. intensity of transmitted wave$T|>=|7/ 5o|?) as a function of

The governing equations for the motion of surface wateifrequency, and the band structure of the corresponding
waves in the systems described by Fig. 1 can be obtained yquare arrays of the cylindrical steps. Two situations are con-
invoking the Newton’s second law and the conservation lawsidered. In Fig. &), the transmitting source is located at the
of mass. Not to exclude other theorigd,12, here we will  center of a square array measured as<14, and the re-
use the formulation given in Reffl6-18§. ceiver is at two lattice constants away from the array along

The displacement of the water surface is denoted byhe I'X direction. In Fig. Zc), both the source and the re-
7(r,t). The equation of motion for its Fourier component is ceiver are located at two lattice constants away from a rect-

derived ag§16-19 angular array alond'X, but on the opposite sides of the
1 array. The array measures as 5. To ensure the stability of
v .(_26 n(F)) +9(F)=—4ws(F =Ty, (1 the r_esults, enough modes a.nd_number of steps .hav_e been
k considered. The wave transmission alongltixedirection is

shown for the periodic case. The transmission through the
corresponding random arrays of steps is also plotted.
From Fig. 2b), we see that a complete band gap region
2_ > % >\ can be identified as ranging from about 12.5 to 16 Hz. A
o”=[gk(F) + bic(K) Jtantk(F)h(F)], @ strong localization regime is shown to range from
in which b is the capillary length. For a fixed frequeney 10 to 14 Hz in the random case (b). Though shallower,
the wave number varies as a function of the déyifh. With-  this regime overlaps with the inhibited transmission regime
out the steps, the wave field ig. We note that Eq(1) is  in the periodic case, i.e., the transmission valley in the peri-
derived when nonlinear effects are ignored. The nonlinearitydic case in Fig. @). By comparison, we see that although
may give rise to delocalizatiof®]. not exactly overlapping with each other, the strong localiza-
In this paper we will apply Eq.l) to the systems depicted tion and complete band gap regime in Figa)2are close to
in Fig. 1. The transmitted waves will be scattered repeatedlgach other; thus finding the complete band gaps will facili-
by the steps, forming the process of multiple scattering. Suckate locating the localization regimes, as suggested in Ref.
a multiple scattering process can be solved for any arrangg¢20]. We note here that in the periodic case the transmission
ment of the steps by the multiple scattering thefk§] fol- inhibition regime does not fully overlap with the complete

where ﬁzaxéx+ayéy, fs is the location of the transmitting
source, and the wave numbesatisfies
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FIG. 4. The fluctuation of transmission as a function of
frequency.

' FIG. 3. zThe phase graph_ and spatial distribution .Of the_mtensutyof Ref. [4]. Although the phase coherence behavior covers
field |7/ 7o/ at two frequencies for one random configuraticat)

and (a2 £=5.0 Hz: (b1) and (b2) f=11.966 Hz. Left panel, the nearly all the sample area, we also notice that there is some

phase picture for the phase vectors defined in the text; here thglsorlentatlon near the boundary. This is due to the finite size

phase of the source is set to zero. Right panel, the intensity spatié{I1 the simulation. For a fini_te s_ystem, the wave can leak out
distribution in the horizontal plane. at the boundary, resulting in disappearance of the phase co-

herence. When enlarging the sample size, we observe that the

band gap. This is because we have set the source inside thkea showing the perfect phase coherence will increase. We
array. When the transmission is measured across the samplave further verified that the features shown in Fig. 3 remain
i.e., the source is placed on one side of the sample and tifilantitatively the same for any other random configuration.
receiver is placed on the other, the two will tend to overlap, We have also considered the fluctuation in the transmis-
as is demonstrated by Fig(Q. sion. Figure 4 plots the fluctuation versus frequency for the
To show the conjectured frozen feature of localized wavegandom case. The sample size is 9 d. Here we see that the
and fluctuating feature of nonlocalized wavd@§, we write ~ fluctuation tends to be zero within a regime which is consis-
the wave fieldy(F') as|7(F)|e?"). This allows us to separate tent with the strong localization range discussed for Fig. 2.
the amplitude field and the phase field of the waves. For thét around the localization transition edges, significant peaks
phase fieldd, we define a unit phase vector field @& N the transmission fluctuation appear. For extremely low fre-
=@, cos6+@, sin 6. Both phase vector field and the wave in- guencies, the fluctuation tends to disappeatr. This_ is because
tensity fieltej!)(7;|2 can be plotted in the-y plane. The signifi- When the frequency approaches zero, the scattering strength
cance of the phase vector field is as follows. The intensityVill diminish, and thus the wave propagation will no longer

flux of surface water waves can be Showrfasj ﬂ|2€9- Itis be'l%ﬁﬁrﬁtje?hgotgsli:;iﬁ))sﬁ length, we plot the wave transmis-
clear that whend is constant, at least by spatial domains, gtn, P

e |40, he wave anspor i come t a siopancion ) % Q1SCLOs i & cton of e istarce fom e
the waves will be localized or frozen in the space. ' 9. o P '

In Fig. 3, the two-dimensional spatial distribution of the periodic case is also potted. Here, the simqlation data are
normalized intensity »/ 7,/ and the phase vector field are shown by the black squares, and the results fitted by the least

plotted. To be brief, we only show the results for two fre- squares method is shown _by the SOIid. Iines;_ the deviations
quencies: 5 Hz and 11.966 Hz, outside and within the IocaIlcrom the I|n.es reflec'g Fhe |nhomogene|ty. It IS shown that
fter removing the trivial geometrical spreading factor, the

ization region, respectively. The phase vectors are locate ' . e
randomly in thex-y plane. Forf=5 Hz, the intensity spreads ata can be fitted well by the exponential functieri’s.

spatially, meanwhile the phase vectors point to various direc-
tions. This indicates that waves are not yet localized at this ol
frequency. The results in Fig.(® nicely demonstrate the
properties of the localized or frozen waves. At
=11.966 Hz, the wave intensity is mainly confined near the
transmission site. Meanwhile, there is an ordering in the
phase vector field, that is, all the phase vectors either point to 30 SN
the same direction or the opposite direction, indicating that Evahcsboncs lengths 0.2831d
the phase field is constant by domains. Here we clearly dem- O 2 stance (f,d) 8 0
onstrate that the localized waves behave as a standing wave

in the random media. These observations fully comply with  FIG. 5. Wave transmission versus the distance away from the
the above general discussion of localization, and also supposburce at 11.966 Hza) the periodic casgp) the random case. The
the previous predictions. The intensity distribution in Fig. 3geometrical spreading factor has been removed by the normaliza-
realizes remarkably well what has been conjectured in Fig. lion. The slopes are fitted from the least squares method.
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From the slopes of the solid lines, we obtain the evanescendeansmission fluctuation. The observation supports the previ-
length in the ordered case and the localization length in theus predictions on localized waves. Since water waves are a
random situation, respectively. simple macroscopic system, experiments could be readily

In summary, we have investigated the Anderson localizaperformed. Therefore, many significant phenomena, previ-

tion phenomenon in the framework of gravity waves overq gy expected at smaller scales such as the discussed Ander-

rough bottoms. As a comparison, the case of correspondin n localization, may be demonstrated with water waves.
regularly structured bottoms is also considered. The results

indicate that when localization occurs, the wave intensity is | _s.c. is supported by the graduate program at Fudan
confined near the transmitting point, and falls off exponenyypjyersity. The encouragement and support from Professor
tially. We have also demonstrated that the localized Wave§ g are greatly appreciated. Z.Y. is grateful to the city of

stand still in the space, represented by the phase coheren . : "
behavior. In addition, the transition from classical diffusion g%anghm for the Bai Yu Lan Fund for visiting scholars. The
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